(1)

RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

FIRST YEAR [2015-18] B.A./B.Sc. FIRST SEMESTER (July – December) 2015 Mid-Semester Examination, September 2015

: 14/09/2015 Date Time : 11 am – 1 pm **PHYSICS** (Honours) Paper : I

Full Marks : 50

[Use a separate Answer Book for each group]

[Answer <u>five</u> questions taking <u>atleast one</u> from each group]

Group – A

Consider the matrix $B = \begin{pmatrix} 0 & -i & 1 \\ i & 0 & -i \\ -i & i & 0 \end{pmatrix}$ 1. a)

> Check whether B is (i) real, (ii) symmetric, (iii) antisymmetric, (iv) singular, (v) orthogonal, [4] (vi) Hermitian, (vii) anti-Hermitian, (viii) unitary.

b) Given the matrix, $A = \begin{pmatrix} 1 & \alpha & 0 \\ \beta & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ where α and β are nonzero complex numbers. Find the

eigenvalues and eigenvectors of A. Find the respective conditions for (i) the eigenvalues to be real and (ii) the eigenvectors to be orthogonal. [4+2]

a) Consider the Differential Equation : $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 5y = -2\cos hx$ Find y when y = 0 and 2.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 1 \text{ at } x = 0.$$
[4]

b) Find the series solution of the Harmite equation $\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2\alpha y = 0$. [6]

Group – B

- a) What is the geometrical interpretation of gradient of a function? 3. [2] b) Show that $\vec{\nabla} \cdot (\vec{\nabla} \times \vec{F}) = 0$. [2] c) What is a conservative force field? If $\vec{v} = (x+2y+az)\hat{i} + (bx-3y-z)\hat{j} + (4x+cy+2z)\hat{k}$ is a conservative force field find a, b, c also find the scalar potential of the vector field. [1+2+3]a) Write Gauss's divergence theorem. [2] 4.
 - b) Verify Green's theorem in the plane for $\oint (xy + y^2)dx + x^2dy$, where C is the closed curve of the region bounded by y = x and $y = x^2$.
 - Verify Stoke's theorem for $\vec{A} = (2x y)\hat{i} yz^2\hat{j} y^2z\hat{k}$, considering upper half surface of c) sphere $x^2 + y^2 + z^2 = 1$. [4]

Group – C

Define inertial frames of reference (IFR) and obtain the Galilean transformation rules, 5. a) connecting the space and time coordinates in two IFRs, S and S' in uniform relative motion. State clearly all the assumptions made.

[4]

[4]

b) Use (a) to obtain the transformation rules for the linear momentum \vec{p} , and kinetic energy T of a particle of mass m.

c) Show that the relation $T = \frac{p^2}{2m}$ is Galilean invariant. [2]

[4]

[6]

[4]

- 6. a) Obtain expressions for the velocity and acceleration of a particle in plain polar coordinates (r, θ) .
 - b) Given that r = ct, $\theta = \Omega t$, where c and Ω are positive constants, find at time t, the (i) velocity vector, \vec{v} (ii) acceleration vector, \vec{a} (iii) speed of the particle, $v = |\vec{v}|$. Deduce that for t > 0, the angle between \vec{v} and \vec{a} is always acute.

<u>Group – D</u>

7.	a)	State Fermat's principle. Using this principle show that all rays passing through the focus of a parabolic reflector will be rendered parallel to the axis after reflection.	[1+2]
	b)	Establish the thin lens formula by applying Fermat's principle.	[4]
	c)	What is spherical aberration? Explain how it can be minimised by using two lenses separated by a distance.	[1+2]
8.	a)	Show that the distance between the two principal points is equal to the distance between the two nodal points.	[2]
	b)	Find out the system matrix for a combination of two thin lenses separated by a distance. Hence determine the equivalent focal length and the principal points.	[4]
	c)	A sphere of glass (n = 1.5) is of 20 cm diameter. A parallel beam of light enters from one side. Determine the system matrix and find where the beam will get focussed on the other side.	[4]`

- X -

(2)